
API Instruction for Dl518&DL9130 Serious Reader
The API Development Kit is designed for user developing application software conveniently, which provide to user in the form of dynamic link file.

It supports Visual C++, VB, C++ Builder and Delphi platform developing environment. User can develop their application software efficiently and correctly by using this API development kit provided by us, and quick solving those problems encountered in the course of software developing.

According to the function features, the API function can be classified into two types function: “reader management function” and “tag operating function”; Tag operating function can be classified as “public function” and “tag operating function under specific protocol”
Reader Management Function
Reader management function is used to achieve the work of configuring the reader operating status, status query and operating functions by host PC.

1. OpenReader
Function prototype： short OpenReader(HANDLE * hCom, unsigned char LinkType,char *com_port)
Explanation：open the reader
Input parameter：

· hCom－Serial Ports handle
· LinkType－Connecting type between reader and computer, 1 for serial ports, 2 for Ethernet, 3 for USB
· com_port－It is serial port name when serial port connecting; It is reader’s IP address when network connecting. It is empty character string or any string when USB connecting.
Return results: the result is zero, which shows the action is correct, others are wrong

Explanation：”OpenReader” function is only for choosing different connecting type, other function reference is the same.
2. CloseReader
Function prototype：short CloseReader(HANDLE hCom)

Function explanation：close reader

Input parameter:

· hCom－Reader handle
Return results: The result is zero, which shows the action is correct, others are wrong

3. SetBaudRate
Function prototype：short SetBaudRate(HANDLE hCom, unsigned short BaudRate)

Function explanation：Configure the baud rate between PC and reader, use only when serial ports connecting.

Input parameter：
· hCom－Serial Ports handle
· BaudRate－configuring BaudRate, the value is 0,1,2,3,4,5.6.7, and the corresponding baudrate are 2400, 4800,9600, 19200, 38400, 57600 , 115200 and 230400bps.

Return results: The result is zero, which shows the action is correct, others are wrong.

4. SelectStation
Function prototype： short SelectStation(unsigned char StationNum)
Function explanation：Set the connective reader address, and use this API choosing station address after connecting successfully.
Input parameter：
· StationNum－address of reader, range from 0 to 255.

Return results: The result is zero, which shows the action is correct, others are wrong.

5. StopRFwork
Function prototype: short StopRFwork(HANDLE hCom)
Function explanation: stop RF module work
Input parameter:

· hCom－Serial Port handle
Return results: the result is zero, which shows the action is correct, others are wrong
6. ResetReader
Function prototype: short ResetReader(HANDLE hCom)
Function explanation: Reset reader
Input parameter:

· hCom－Serial Ports handle
Return results: the result is zero, which shows the action is correct, others are wrong
7. SetParameter
Function prototype: short SetParameter(HANDLE hCom, unsigned int Addr, unsigned char ParaCount, unsigned char * Parameters)

Function explanation: Configure multi-working parameters for reader
Input parameter:
· hCom－Serial ports handle
· Addr－The first address of multi-working parameters need to be configured, it is from 2 to 255

· ParaCount－Number of parameters to be set.
· Parameters－Value of the operating parameters need to configured
Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation：It’s internal function, usually users no need to use it.

8. GetParameter
Function prototype: short GetParameter(HANDLE hCom, unsigned int Addr, unsigned char ParaCount,unsigned char *value)

Function explanation: Read multi working parameters of reader.
Input parameter:
· hCom－Serial ports handle
· Addr－The first address of multiple working parameters
· ParaCount－Number of parameters
· Value－Returning data array which store working parameters.
Return results: The result is zero, which shows the action is correct, others are wrong.

Explanation：It’s internal function, usually users no need to use it.

9. IdmatchStart
Function prototype: short IDMatchStart(HANDLE hCom)
Function explanation：The Reader supports ID matching function. Before using this function, it’s necessary to write all ID data into reader in advance, and the whole operation needs to be an atomic operation. The API designed 3 functions to support ID matching function. “IdmatchStart” function is to notify the reader ready for ID matching data writing
Input parameter:

· hCom－Serial ports handle

Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation：It’s internal function, usually users no need to use it. If you need to use ID matching function, then please ask for the ID matching tool software from us.

10. IdmatchData
Function prototype: short IdmatchData(HANDLE hCom, unsigned char count, unsigned char length,unsigned char * Data)
Function explanation: Write the required ID Data into reader
Input parameter:

· hCom－Serial ports handle
· count－ The number of tags
· Length－data length for “Data” array.
· Data－Tag information data. The format is: tag type (1 BYTE), tag ID length (1 BYTE), tag ID.
Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation：It’s internal function, usually users no need to use it. If you need to use ID matching function, then please ask for the ID matching tool software from us.

11. IdmatchEnd
Function prototype: short IdmatchEnd(HANDLE hCom)
Function explanation： End the ID matching data inputting
Input parameter:

· hCom－Serial ports handle
Return results: the result is zero, which shows the action is correct, others are wrong.

Explanation：It’s internal function, usually users no need to use it. If you need to use ID matching function, then please ask for the ID matching tool software from us.
12. GetFirmwareVersion
Function prototype: short GetFirmwareVersion (HANDLE hCom, unsigned char * flag ,unsigned char * major, unsigned char * minor)
Function explanation: Read the program version of reader firmware.
Input parameter:
· hCom－Serial ports handle
· flag－Reader firmware program identification
· major－major version value of reader firmware
· minor－minor version value of reader firmware
Return results: the result is zero, which shows the action is correct, others are wrong.

13. GetTrigState
Function prototype: short GetTrigState(HANDLE hCom)

Function explanation： query the trigger inputting status of reader
Input parameter:

· hCom－Serial ports handle
Return results:：It stands for triggering status. D0 bit－0 for invalid triggering, 1 for valid triggering, there is no definition for D1~D7
Tag Operation Function
14. SingleTagIdentifyEX
Function prototype: short SingleTagIdentifyEX(HANDLE hCom, unsigned char* TagType, unsigned char *value)

Function explanation： Single tag Identification
Input parameter:
· hCom－Serial ports handle
· TagType－Tag type identifying, it returns from reader. Type 8－ID length is 8 bytes. Type 9－ID length is 4 bytes
· value－Array for storing identified tag ID.
Return results: the result is zero, which shows the action is correct, others are wrong.

15. MultipleTagIdentify
Function prototype: short MultipleTagIdentify(HANDLE hCom, unsigned char TagType, unsigned char *Count, TagIds *tagids)

Function explanation：Multi-tag identification
Input parameter:
· hCom－Serial ports handle
· TagType－Tag type identifying.
· Count－The number of identified tag
· Tagids－Information for Identified tag, including tag type, tag ID and tag battery status.
Return results: the result is zero, which shows the action is correct, others are wrong.

16. ReadTagUser
Function prototype: short ReadTagUser(HANDLE hCom, unsigned char count, unsigned int Addr, unsigned char *value, unsigned char *TagID)

Function explanation： Read data of specified memory address for any tag
Input parameter:

· hCom－Serial ports handle
· count—The number of reading data
· Addr— The first address of tag user area (address length is 2bytes), and the reader reading data starts from this address.
· Value—Array for storing read data.
· TagID—Store the tag ID of this operation.(Return from reader)
Return results: the result is zero, which shows the action is correct, others are wrong.

17. ReadTagUserWithID
Function prototype: short ReadTagUserWithID(HANDLE hCom, unsigned char count, unsigned int Addr, unsigned char *Id,unsigned char *value)

Function explanation: Read data in specified memory address for specific tag

· hCom－Serial ports handle
· count—The number of reading data
· Addr—The first address of tag user area (address length is 2bytes), and the reader reading data starts from this address.
· Id— ID No. of target tag. Reader only read the user area of this ID.

· Value—Array for storing read tag data.
Return results: the result is zero, which shows the action is correct, others are wrong.

18. WriteTagUser
Function prototype: short WriteTagUser(HANDLE hCom, unsigned char count, unsigned int Addr, unsigned char *value,unsigned char *Result, unsigned char *TagID)

Function explanation: Write data to specified memory address for any tag.

Input parameter:

· hCom－Serial ports handle
· count—The number of writing data
· Addr—The first address of tag user area (address length is 2bytes), and the reader writing data starts from this address.
· Value—Array for storing written data.
· Result—The returning result when writing tag(It’s used for future development and can be ignored)

· TagID—Store the tag ID of this operation.(Return from reader)
Return results: the result is zero, which shows the action is correct, others are wrong.

19. WriteTagUserWithID
Function prototype: short WriteTagUserWithID(HANDLE hCom, unsigned char count, unsigned int Addr,unsigned char *Id, unsigned char *value,unsigned char *Result)

Function explanation: write data to specified memory address for specific tag

Input parameter:

· hCom－Serial ports handle
· count—The number of writing data
· Addr—The first address of tag user area (address length is 2bytes), and the reader writing data starts from this address.
· Id—ID No. of target tag. Reader only writes data to the user area of this ID.
· Value—Array for storing written data.
· Result—The returning result when writing tag(It’s used for future development and can be ignored)

Return results: the result is zero, which shows the action is correct, others are wrong.

20. EnterTagPassword

Function prototype: short EnterTagPassword(HANDLE hCom, unsigned char *Passwrd)

Function explanation: Input tag password. After performing this function, the password will be stored in reader. You need to input the password again after resetting the reader or electric cut.
Input parameter:

· hCom－Serial ports handle
· Passwrd: Array for storing password
Return results: the result is zero, which shows the action is correct, others are wrong.
21. SetTagPassword

Function prototype: short SetTagPassword(HANDLE hCom, unsigned char *Id,unsigned char *NewPasswrd)
Function explanation: set tag password. Before using this function, you need to call “EnterTagPassword” function and input the old password.
Input parameter：
· hCom－Serial ports handle
· Id：Target tag ID, if input 0xFFFFFFFF, it stands for any tag
· NewPasswrd：New password
Return results: the result is zero, which shows the action is correct, others are wrong.
22. SetTagSafeLevel

Function prototype: short SetTagSafeLevel(HANDLE hCom, unsigned char *Id, unsigned char SafeLevel)
Function explanation: Set tag security classification. Before using this function, you need to call “EnterTagPassword” function and input password.

Input parameter:
· hCom－Serial ports handle
· Id：Target tag ID, if input 0xFFFFFFFF, it stands for any tag
· SafeLevel：Security classification for operating tag. “0” is for open status, reading/writing tag no need to input password. “1” is for security status, it requires inputting password for any tag operating.
Return results: the result is zero, which shows the action is correct, others are wrong.
23. LockTagUser
Function prototype: short LockTagUser(HANDLE hCom, unsigned char *Id, unsigned char LockStatus)

Function explanation: Lock the tag or not. Before using this function, you need to call “EnterTagPassword” function and input password.

Input parameter:
· hCom－Serial ports handle
· Id: Target tag ID, if input 0xFFFFFFFF, it stands for any tag

· LockStatus： Status value. “0”means don’t lock the tag user area, and it can do reading/writing normally. “1” means lock tag user area, it can only do reading, but can’t do writing operation.
Return results: the result is zero, which shows the action is correct, others are wrong.

Return Code Meaning:

	Code
	Explanation
	Memo

	0x00
	perform right
	

	0x01
	perform failed
	

	0x02
	wrong reading/writing address or length
	for tag

	0x03
	wrong password
	for tag

	0x04
	user area be locked
	for tag

	0x05
	no specified tag in certain area
	for tag

	0x10
	wrong command
	

	0xF5
	repeat locking
	for tag

3

