UHFGATE.DLL User Guide V1.1
11. Operation System Requirement

12. Function List

53. Function Explanation

53.1) AutoOpenComPort

63.2) OpenComPort()

63.3) CloseComPort

73.4) CloseSpecComPort

73.5) OpenNetPort

73.6) CloseNetPort

83.7) GetChannelMessage

83.8) Acknowledge

93.9) SetClock

93.10) GetClock

103.11) ClearControllerBuffer

103.12) ConfigureController

113.13) GetControllerConfig

123.14) GetControllerInfo

123.15) GetControllerReaderConnectionStatus

133.16) SetControllerAddr

133.17) ModeSwitch

143.18) IRDirectionSetting

143.19) GetEASMessage

153.20) Set EAS work style

163.21) Get EAS work style

173.22) set read parameter

183.23) Get read parameter

193.24) Get statistical message

193.25) Ser reader work paramater

203.26) Ger reader work paramater

213.27) SetRelay

213.28) BuzzerAndLEDControl

224. Appendix 1

1. Operation System Requirement

WINDOWS 2000/XP/7/8
2. Function List
UHFGATE.DLL includes the following functions:
1）int AutoOpenComPort(int* Port, unsigned char *ConAddr, int* PortHandle);
2）int OpenComPort(int Port, unsigned char *ConAddr, int* PortHandle);
3）int CloseComPort(void);
4）int CloseSpecComPort(int PortHandle);
5）int OpenNetPort(int Port, LPSTR IPaddr, unsigned char *ConAddr, int* PortHandle);

6) int CloseNetPort(int PortHandle);

7) int GetChannelMessage(unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* IRStatue, int PortHandle);
8）int Acknowledge(unsigned char *ConAddr, int PortHandle);
9) int SetClock(unsigned char *ConAddr, unsigned char* SetTime, unsigned char* IRStatue, int PortHandle);
10) int GetClock(unsigned char *ConAddr, unsigned char* CurrentTime, unsigned char* IRStatue, int PortHandle);
11) int ClearControllerBuffer(unsigned char *ConAddr, unsigned char* IRStatue, int PortHandle);
12) int ConfigureController(unsigned char *ConAddr, unsigned char IREnable, unsigned char IRTime, unsigned char TagExistTime, unsigned char AlarmEn, unsigned char DelayTime, unsigned char Pepolemsg, unsigned char AEn, unsigned char* IRStatue, int PortHandle);
13) int GetControllerConfig(unsigned char *ConAddr, unsigned char *IREnable, unsigned char *IRTime, unsigned char *TagExistTime, unsigned char *AlarmEn, unsigned char *DelayTime, unsigned char *Pepolemsg, unsigned char *AEn, unsigned char* IRStatue, int PortHandle);
14) int GetControllerInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* IRStatue, int PortHandle);
15) int GetControllerReaderConnectionStatus(unsigned char *ConAddr, unsigned char *ConnectionStatus, unsigned char* IRStatue, int PortHandle) ;

16) int SetControllerAddr(unsigned char *ConAddr, unsigned char Flag, unsigned char NewAddr, unsigned char *IRStatue, int PortHandle);

17) int ModeSwitch(unsigned char *ConAddr, unsigned char *Mode, unsigned char *IRStatue, int PortHandle);

18) int IRDirectionSetting(unsigned char *ConAddr, unsigned char *Flag, unsigned char *IRStatue, int PortHandle);

19)int GetEASMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* IRStatue, int PortHandle);
20)int SetEASWorkStyle (unsigned char *ConAddr, unsigned char *EASMode, unsigned char *IRStatue, int PortHandle);
21)int GetEASWorkStyle (unsigned char *ConAddr, unsigned char *EASMode, unsigned char *IRStatue, int PortHandle);
22) int SetReadParameter(unsigned char *ComAdr, unsigned char Qvalue, unsigned char Session, unsigned char AdrTID, unsigned char LenTID, unsigned char MaskMem, unsigned char *MaskAdr, unsigned char MaskLen, unsigned char *MaskData, unsigned char *IRStatue, int FrmHandle);
23) int GetReadParameter(unsigned char *ComAdr, unsigned char *Qvalue, unsigned char *Session, unsigned char *AdrTID, unsigned char *LenTID, unsigned char *MaskMem, unsigned char *MaskAdr, unsigned char *MaskLen, unsigned char *MaskData, unsigned char *IRStatue, int FrmHandle);
24)int StatisticalMsg(unsigned char *ComAdr, unsigned char *positive, unsigned char *reverse,

unsigned char *AlarmNum, unsigned char *IRStatue, int FrmHandle);
25)int SetWorkParameter(unsigned char *ComAdr, unsigned char Power, unsigned char MaxFre, unsigned char MinFre, unsigned char BeepEn, unsigned char *IRStatue, int FrmHandle);

26)int GetWorkParameter(unsigned char *ComAdr, unsigned char *Power, unsigned char *MaxFre, unsigned char *MinFre, unsigned char *BeepEn, unsigned char *IRStatue, int FrmHandle);
27) int SetRelay(unsigned char * ComAddr, unsigned char RelayTime, unsigned char *IRStatue, int FrmHandle);
28)int BuzzerAndLEDControl(unsigned char * ComAddr,unsigned char BuzzerOnTime,unsigned char BuzzerOffTime,unsigned char BuzzerActTimes, unsigned char LEDOnTime,unsigned char LEDOffTime,unsigned char LEDFlashTimes,unsigned char *IRStatue,int FrmHandle);
3. Function Explanation
3.1) AutoOpenComPort

Function description:

This function is used to automatically detect the communication port unoccupied by other application and attached with a controller. The function tries to establish the connection between them. The protocol parameters are 38400bps, 8 data bits, 1 start bit, 1 stop bit, even parity bit.
If the connection is established successfully, the function will open the communication port and return a valid handle, otherwise the function will return an error code with a invalid handle (value as -1).

Usage:

int AutoOpenComPort(int * Port, unsigned char *ConAddr, int *PortHandle);

Parameter:

Port: Pointed to the communication port number(COM1~COM9) that the controller is detected and connected.

ConAddr: Pointed to the address of the controller.

When using broadcasting address 0xFF as ConAddr to call the function, the port number to which the controller is detected and the address of the controller will be written back to parameter Port and ConAddr;

When using a designated address 0x00~0xFE as ConAddr to call the function, the port number to which the controller with the specified address is detected will be written back to parameter Port.

Constants COM1~COM9 are defined as follows:

#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
PortHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the controller connected to the port.
Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.2) OpenComPort()

Function description:

This function is used to establish the connection between the controller and a specified communication port. The protocol parameters are 38400bps, 8 data bits, 1 start bit, 1 stop bit, even parity bit.

Usage:

int OpenComPort(int Port, unsigned char *ConAddr, int *PortHandle);
Parameter:

Port: Communication port number which is a constant from COM1 to COM9 defined as following:

#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
ConAddr: Pointed to the address of the controller.

When using broadcasting address 0xFF as ConAddr to call the function, the address of the controller will be written back to parameter ConAddr;

When using a designated address 0x00~0xFE as ConAddr to call the function, the function will detect whether a specified address controller is connected to the designated communication port.
PortHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the controller connected to the port.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.3) CloseComPort

Function description:

This function is used to disconnect the controller and release the corresponding communication port resources. In some development environment, the communication port resources must be released before exiting. Otherwise the operation system will become unstable.
Usage:

int CloseComPort(void);

Parameter: None.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.4) CloseSpecComPort

Function description:

This function is used to disconnect the controller with the designated communication port and release the corresponding resources.

Usage:
int CloseSpecComPort (int PortHandle);

Parameter:
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.5) OpenNetPort
Function description:
The function is used to open net port.
Usage:
int OpenNetPort(int Port,LPSTR IPaddr, unsigned char *ComAdr, int FrmHandle);
Parameter:
Port: Pointed to the net port of the reader.

IPaddr: Pointed to string of reader IP.
ComAdr: Pointed to the address of the reader.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function OpenNetPort..
Returns:
None
3.6) CloseNetPort
Function description:
The function is used disconnected net port.
Usage:
int CloseNetPort (int FrmHandle);
Parameter:
FrmHandle: Handle of the corresponding communication net port the device is connected. The handle value is got when calling function OpenNetPort..
Returns:

None
3.7) GetChannelMessage
Function description:
This function is used to get message information from controller in Channel Mode. The messages include routine message and other alarming or statistic message.

Usage:
Int GetChannelMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* IRStatue, int PortHandle);

Parameter:

ConAddr：Address of the controller.
Msg：Pointed to the message data from controller.
MsgLength：Pointed to the length of Msg.

MsgType：Pointed to the type of Msg information.
(1) MsgType = 0, Routine Response:
The 1st to 6th bytes of the Msg are the time stamp as year/month/day/hour/minute/second

The 7th byte is the number of tag had read

Else (MsgLength-7) bytes are tags information. Length+epc/id for each tag .

(2) MsgType = 1, Auxiliary Response:
The 1st of Msg is flag of direction.

The 2st to 4th bytes of the Msg are number of people forward passed (LSB).

The 5rd to 7th bytes of the Msg are number of people reversely passed (LSB).

The 8th to 11th bytes of the Msg are number of alarm(LSB).

The 12th to 17th bytes of the Msg are the time stamp as year/month/day/hour/minute/second .

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.8) Acknowledge

Function description:
When the host has correctly received the feedback of command ‘C’, ‘L’ and ‘E’, it should issue this command as an acknowledgement.

Usage:
Int Acknowledge (unsigned char *ConAddr, int PortHandle);

Parameter:

ConAddr: Address of the controller.
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns: None.
3.9) SetClock

Function description:
This function is used to set the device’s built-in real time clock.
Usage:
int SetClock(unsigned char *ConAddr, unsigned char* SetTime, unsigned char* IRStatue, int PortHandle);
Parameter:
ConAddr: Address of the controller.
SetTime: 6 bytes time stamp for year-month-day-hour-minute-second in 24hour format.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.10) GetClock

Function description:
This function is used to query controller’s clock information

Usage:
Int GetClock(unsigned char *ConAddr, unsigned char* CurrentTime, unsigned char* IRStatue, int PortHandle);
Parameter:
ConAddr: Address of the controller.
CurrentTime: Pointed to 6 bytes time stamp for year-month-day-hour-minute-second in 24hour format.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.11) ClearControllerBuffer
Function description:
This function is used to clear the controller’s all buffered tag UID information, messages, personnel passing counter and detected tag counter.

Usage:
Int ClearControllerBuffer(unsigned char *ConAddr, unsigned char* IRStatue, int PortHandle);

Parameter:
ConAddr: Address of the controller.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.12) ConfigureController

Function description:
This function is used to configure the controllers’ parameters.

Usage:
int ConfigureController(unsigned char *ConAddr, unsigned char IREnable, unsigned char IRTime, unsigned char TagExistTime, unsigned char AlarmEn, unsigned char DelayTime, unsigned char Pepolemsg, unsigned char AEn, unsigned char* IRStatue, int PortHandle);

Parameter:
ConAddr: Address of the controller.

IREnable: IR trigger flag , 0-Disable;1-Enable.

IRTime:IR trigger delay time T1. (T1*1s，0 <= T1 <= 255)
TagExistTime: If the filtering time (T2 * 1 s and 0 < = T2 < = 255) detected many times within the same tag, just upload once EPC/TID.
AlarmEn: Alarm flag , 0-Disable;1-Enable;
DelayTime: EAS mode, the controller of tag eligible for alarm, if can sound and light alarm, according to the set off time (T3 * 100 ms, 0 < = T3 < = 255) and relay. The default value is 0.
Pepolemsg:Used to set the controller whether produce personnel in and out of the news , 0-Disable;1-Enable;
AEn: ‘A’ command flag. 0-Disable;1-Enable;
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.13) GetControllerConfig
Function description:
This function is used to get configure parameters of controllers.

Usage:
int GetControllerConfig(unsigned char *ConAddr, unsigned char *IREnable, unsigned char *IRTime, unsigned char *TagExistTime, unsigned char *AlarmEn, unsigned char *DelayTime, unsigned char *Pepolemsg, unsigned char *AEn, unsigned char* IRStatue, int PortHandle);

Parameter:
ConAddr: Address of the controller.

IREnable: IR trigger flag , 0-Disable;1-Enable.

IRTime:IR trigger delay time T1. (T1*1s，0 <= T1 <= 255)
TagExistTime: If the filtering time (T2 * 1 s and 0 < = T2 < = 255) detected many times within the same tag, just upload once EPC/TID.
AlarmEn: Alarm flag , 0-Disable;1-Enable;
DelayTime: EAS mode, the controller of tag eligible for alarm, if can sound and light alarm, according to the set off time (T3 * 100 ms, 0 < = T3 < = 255) and relay. The default value is 0.
Pepolemsg:Used to set the controller whether produce personnel in and out of the news , 0-Disable;1-Enable;
AEn: ‘A’ command flag. 0-Disable;1-Enable;
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.14) GetControllerInfo

Function description:
This function is used to get controller’s information.

Usage:
int GetControllerInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* IRStatue, int PortHandle);

Function Description：Infrared controller to obtain detailed information
Parameter:
ConAddr: Address of the controller.
ProductCode: Pointed to controller’s product code.

0x90：RRU-CH-WL；

0x91：RRU-CH-C16058。
MainVer: Pointed to the main version number of the controller

SubVer: Pointed to the sub-version number of the controller

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.15) GetControllerReaderConnectionStatus
Function description:
This function is used to check whether the reader is correctly connected with the controller.
Usage:
int GetControllerReaderConnectionStatus(unsigned char *ConAddr, unsigned char *ConnectionStatus, unsigned char* IRStatue, int PortHandle) ;
Parameter:
ConAddr: Address of the controller.
ConnectionStatus：Pointed to connection status of the controller and the reader

0x00: the connection is broken and the controller is trying to reconnect with the reader.

0x01: the connection is normal.

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.16) SetControllerAddr
Function description:
This function is used to set or get the controller’s address.

Usage:
Int SetControllerAddr(unsigned char *ConAddr, unsigned char Flag, unsigned char NewAddr, unsigned char * IRStatue, long PortHandle);
Parameter:
ConAddr：Address of the controller.
Flag: Operation flag

 Flag = 0: Get the controller address;
 Flag = 1: Set the controller address.
NewAddr: New controller’s address. Range is 0~254.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.17) ModeSwitch

Function description:
This function is used to view or change the work mode of the controller. The controller supports two work modes: Inventory Mode and EAS Mode.
Usage:
int ModeSwitch(unsigned char *ConAddr, unsigned char *Mode, unsigned char * IRStatue, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Mode: Work mode:
	Bit1
	Bit0
	Work mode

	0
	0
	Inventory Mode

	0
	1
	EAS Mode

bit7 = 0，read current work mode.，
bit7 = 1，Set current work mode according to bit0&bit1.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.18) IRDirectionSetting

Function description:
This function is used to query or set the infrared sensors’ sensing sequences.
Usage:
Int IRDirectionSetting(unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Input/output variable.

When as input:
bit0 = 0: forward infrared sensor sequence.
bit0 = 1: reversed infrared sensor sequence.
bit7 = 0: query operation. Bit0 value should be neglected.
bit7 = 1: set operation. The infrared sensor sequence will be set as bit0 defined.

Other bits are reserved.
When as output:
bit0=0: forward infrared sensor sequence.
bit0=1: reversed infrared sensor sequence.
Other bits are reserved.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.19) GetEASMessage
Function description:
This function is used to get person-passing message, EAS alarm message and other statistic or alarm messages of controller in EAS mode.

Usage:
Int GetEASMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* IRStatue, int PortHandle);
Parameter:
ConAddr：Address of the controller.
Msg: Pointed to the message information data access from controller.
MsgLength: Pointed to the length of Msg.
MsgType：Pointed to the type of information.
(1) MsgType = 0, routine response message:

The 1st bytes of the Msg is the direction data.

The 2nd to 7th bytes are the time stamp as year/month/day/hour/minute/second.
(2) MsgType = 1, statistic Message:
The 1st bytes of the Msg is the direction data.
The 2st to 4th bytes of the Msg are number of people forward passed (LSB).

The 5rd to 6th bytes of the Msg are number of people reversely passed (LSB).

The 8th to 11th bytes of the Msg are number of people passed in uncertain direction (LSB).

The 12th to 17th bytes are the time stamp as year/month/day/hour/minute/second.
(3) MsgType = 2, EPC responce Message:
The 1th byte is 1.

The 2th to 7th bytes are the time stamp as year/month/day/hour/minute/
Second , else bytes are epc, length is MsgLength-7
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.20) Set EAS work style
Function description:
This function is used to set EAS detect mode .

Usage:
int SetEASWorkStyle (unsigned char *ConAddr, unsigned char *EASMode, unsigned char *IRStatue, int PortHandle);
Parameter:
ConAddr：Address of the controller.
EASMode: 2 byte.
① Configure byte. Only bit0 and bit4 are valid. Other bits are reserved and should be 0.

bit0=0, standard EAS detection enabled and is the default setting.

bit0=1, emulate EAS alarm enabled.

bit4=0, when emulate EAS alarm enabled and EAS alarm detected, not return EPC

bit4=1, when emulate EAS alarm enabled and EAS alarm detected, return EPC.
②emulate Type:

Valid at the time of simulation EAS alarm Settings.

0: when the detection to the label of the EPC number 92-93 bit values of 01 alarm, when other values do not call the police.

1: when the detection to the label of EPC area the first word of highest alarm when equal to zero, equal to 1 does not report to the police.

2: alarming delected the label with any EPC number,otherwise don't call the police.

Other values, the default is 0

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.21) Get EAS work style
Function description:
This function is used to get EAS detect mode .

Usage:
int GetEASWorkStyle (unsigned char *ConAddr, unsigned char *EASMode, unsigned char *IRStatue, int PortHandle);
Parameter:
ConAddr：Address of the controller.
EASMode: 2 byte
① Configure byte. Only bit0 and bit4 are valid. Other bits are reserved and should be 0.

bit0=0, standard EAS detection enabled and is the default setting.

bit0=1, emulate EAS alarm enabled.

bit4=0, when emulate EAS alarm enabled and EAS alarm detected, not return EPC

bit4=1, when emulate EAS alarm enabled and EAS alarm detected, return EPC.
②emulate Type:

Valid at the time of simulation EAS alarm Settings.

0: when the detection to the label of the EPC number 92-93 bit values of 01 alarm, when other values do not call the police.

1: when the detection to the label of EPC area the first word of highest alarm when equal to zero, equal to 1 does not report to the police.

2: alarming delected the label with any EPC number,otherwise don't call the police.

Other values, the default is 0

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.22) set read parameter
Function description:
This function is used to set parameter when inventory tag.

Usage:
int SetReadParameter(unsigned char *ComAdr, unsigned char Qvalue, unsigned char Session, unsigned char AdrTID, unsigned char LenTID, unsigned char MaskMem, unsigned char *MaskAdr, unsigned char MaskLen, unsigned char *MaskData, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr：Address of the controller.
Qvalue: input, 2Q closed to tag number is best.

Session: input,
0x00: S0

0x01: S1；

0x02: S2；

0x03: S3。

0xff: AUTO(only EPC query is effetive).

AdrTID:the start address of tid query.

LenTID:the length of tid query.if LenTID=0,query EPC.

MaskMem: mask memery.0x01:EPC; 0x02: TID; 0x03:User.

MaskAdr: 2bytes, mask start bit address.

MaskLen: the bit length of mask. if MaskLen=0,not mask.
MaskData: the data of mask ,length is MaskData/8.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.23) Get read parameter
Function description:
This function is used to get parameter when inventory tag.

Usage:
int GetReadParameter(unsigned char *ComAdr, unsigned char *Qvalue, unsigned char *Session, unsigned char *AdrTID, unsigned char *LenTID, unsigned char *MaskMem, unsigned char *MaskAdr, unsigned char *MaskLen, unsigned char *MaskData, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr：Address of the controller.
Qvalue: input, 2Q closed to tag number is best.

Session: input,
0x00: S0

0x01: S1；

0x02: S2；

0x03: S3。

0xff: AUTO(only EPC query is effetive).

AdrTID:the start address of tid query.

LenTID:the length of tid query.if LenTID=0,query EPC.

MaskMem: mask memery.0x01:EPC; 0x02: TID; 0x03:User.

MaskAdr: 2bytes, mask start bit address.

MaskLen: the bit length of mask. if MaskLen=0,not mask.

MaskData: the data of mask ,length is MaskData/8.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.24) Get statistical message
Function description:
This function is used to get statistical message.
Usage:
int StatisticalMsg(unsigned char *ComAdr, unsigned char *positive, unsigned char *reverse,unsigned char *AlarmNum, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr：Address of the controller.
positive:3 bytes, number of people forward passed.

reverse: 3 bytes,number of people reversely passed.

AlarmNum: 4 bytes, number of alarm.

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.25) Ser reader work paramater
Function description:
This function is used to set reader work parameters.
Usage:
int SetWorkParameter(unsigned char *ComAdr, unsigned char Power, unsigned char MaxFre, unsigned char MinFre, unsigned char BeepEn, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr：Address of the controller.
Power: reader power, range is 0-30,30dBm is 1W.

MaxFre: bit7-bit6 is set Spectrum,bit5-bit0 is set maximum frequency.
MinFre: bit7-bit6 is set Spectrum,bit5-bit0 is set minimum frequency.
	MaxFre(Bit7)
	MaxFre(Bit6)
	MinFre(Bit7)
	MinFre(Bit6)
	FreqBand

	0
	0
	0
	0
	Reserve

	0
	0
	0
	1
	Chinese band2

	0
	0
	1
	0
	US band

	0
	0
	1
	1
	Korean band

	0
	1
	0
	0
	EU band

	0
	1
	0
	1
	Reserve

	…
	…
	…
	…
	…

	1
	1
	1
	1
	Reserve

Chinese band2：
Fs = 920.125 + N * 0.25 (MHz) N∈[0, 19]。

US band：

Fs = 902.75 + N * 0.5 (MHz) N∈[0,49]。

Korean band：
Fs = 917.1 + N * 0.2 (MHz) N∈[0, 31]。

EU band:

Fs = 865.1 + N*0.2(MHz) N∈[0, 14]。

BeepEn: Reader whether beep when the tag is prompt, bit0 = 0: Disabled. (the default), bit0 = 1: enabled.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.26) Ger reader work paramater
Function description:
This function is used to Get reader work parameters.
Usage:
int GetWorkParameter(unsigned char *ComAdr, unsigned char *Power, unsigned char *MaxFre, unsigned char *MinFre, unsigned char *BeepEn, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr：Address of the controller.
Power: reader power, range is 0-30,30dBm is 1W.

MaxFre: bit7-bit6 is set Spectrum,bit5-bit0 is set maximum frequency.
MinFre: bit7-bit6 is set Spectrum,bit5-bit0 is set minimum frequency.
	MaxFre(Bit7)
	MaxFre(Bit6)
	MinFre(Bit7)
	MinFre(Bit6)
	FreqBand

	0
	0
	0
	0
	Reserve

	0
	0
	0
	1
	Chinese band2

	0
	0
	1
	0
	US band

	0
	0
	1
	1
	Korean band

	0
	1
	0
	0
	EU band

	0
	1
	0
	1
	Reserve

	…
	…
	…
	…
	…

	1
	1
	1
	1
	Reserve

Chinese band2：
Fs = 920.125 + N * 0.25 (MHz) N∈[0, 19]。

US band：

Fs = 902.75 + N * 0.5 (MHz) N∈[0,49]。

Korean band：
Fs = 917.1 + N * 0.2 (MHz) N∈[0, 31]。

EU band:

Fs = 865.1 + N*0.2(MHz) N∈[0, 14]。

BeepEn: Reader whether beep when the tag is prompt, bit0 = 0: Disabled. (the default), bit0 = 1: enabled.
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.27) SetRelay

Function description:
This function is used to control the device’s built-in relay to pick-up, last for a requested time and drop out.

Usage:
int SetRelay(unsigned char * ComAddr, unsigned char RelayTime, unsigned char *IRStatue, int FrmHandle);
Parameter:
ConAddr: Address of the controller.

RelayTime: the relay’s pick-up duration is Time*100ms, 0<=Time<=255.

IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.28) BuzzerAndLEDControl
Function description:
This function is used to control the device’s built-in LED & Buzzer to flash & beep.
Usage:
int BuzzerAndLEDControl(unsigned char * ComAddr,unsigned char BuzzerOnTime,unsigned char BuzzerOffTime,unsigned char BuzzerActTimes, unsigned char LEDOnTime,unsigned char LEDOffTime,unsigned char LEDFlashTimes,unsigned char *IRStatue,int FrmHandle);
Parameter:
ConAddr: Address of the controller.
BuzzerOnTime: Buzzer beep duration (T1*100ms), 0<=T1<=255.

BuzzerOffTime: Buzzer mute duration (T2*100ms), 0<=T2<=255.

BuzzerActTimes: Buzzer action times (0<=T3<=255).

LEDOnTime: LED light on duration (T4*100ms), 0<=T4<=255.

LEDOffTime: LED light off duration (T5*100ms), 0<=T5<=255

LEDFlashTimes: LED flash times (0<=T6<=255);
IRStatue：Pointed to IR blocking state. bit3-bit0 is effective. bit=1, IR is not normal ,bit=0 IR is normal.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
4. Appendix 1

List of Command Returned value:

	Value
	COMMENT

	0x00
	Operation succeed

	0x08
	The command is invalid.

	0x09
	The current mode of the controller is incorrect.

	0x0E
	EEPROM operation error

	0x30
	Communication error.

	0x31
	CRC Check error.

	0x32
	Length of returned data error.

	0x33
	Communication Busy.

	0x0F
	General error.

PAGE
22

