HFREADER9.DLL Dynamic Link Library

User’s Manual V7.2
HFREADER9.DLL is a dynamic link library designed to facilitate ISO/IEC 15693 protocol HF tag application software development when using HF series HF tag reader/writer.
HF series HF tag reader/writer include the following models: HF201, HF201Lite, HF202A, HF203A, HF201T, HF202T, HF203T, HF291, HF291F, HF292A, HF293A, HF291T, HF292T, HF293T, HF296A, HF001, HF001Lite, HF002A, HF003A, HF001T, HF002T, HF003T, HF091, HF091F, HF092A, HF093A, HF091T, HF092T, HF093T, HF036SR, HF036USB, HF036CF, R9037SR, HF037USB, HF037CF etc.
1) Operation System Requirement

WINDOWS 2000/XP

2) Function List
HFREADER9.DLL includes the following functions for the ISO/IEC 15693 HF tag operation.
Remark: The functions supported may be different for various models of HF series HF tag reader/write. Please refer to appendix 1 for details..

2.1) General Function

1)Int AutoOpenComPort(int *Port, unsigned char *ComAdr, unsigned char Baud, int *FrmHandle);

2)Int OpenComPort(int Port, unsigned char *ComAdr, unsigned char Baud, int *FrmHandle);

3)Int CloseComPort(void);

4)Int CloseSpecComPort(int FrmHandle);

5)Int GetReaderInformation(unsigned char *ComAdr, unsigned char *VersionInfo, unsigned char *ReaderType,unsigned char *TrType,unsigned char *InventoryScanTime, int FrmHandle);

6)Int OpenRf(unsigned char *comadr, int FrmHandle);

7)Int CloseRf(unsigned char *comadr, int FrmHandle);
8)Int WriteComAdr(unsigned char *ComAdr, unsigned char *ComAdrData, int FrmHandle);
9)Int WriteInventoryScanTime(unsigned char *ComAdr, unsigned char *InventoryScanTime, int FrmHandle);

10)Int SetGeneralOutput(unsigned char *ComAdr, unsigned char *OutputData, int FrmHandle);

11)Int GetGeneralInput(unsigned char *ComAdr, unsigned char *InputData, int FrmHandle);

12)Int SetRelay(unsigned char *ComAdr, unsigned char *RelayAction, int FrmHandle);

13)Int SetActiveANT(unsigned char *ComAdr, unsigned char *_ANT_Status, int FrmHandle);

14)Int GetANTStatus(unsigned char *ComAdr, unsigned char *Get_ANT_Status, int FrmHandle);

15)Int SetUserDefinedBlockLength(unsigned char *ComAdr, unsigned char *_Block_Len, int FrmHandle);

16)Int GetUserDefinedBlockLength(unsigned char *ComAdr, unsigned char *_Block_Len, int FrmHandle);

17)Int SetScanMode(unsigned char *ComAdr, unsigned char *_Scan_Mode_Data, int FrmHandle);

18)Int GetScanModeStatus(unsigned char *ComAdr, unsigned char *_Scan_Mode_Status, int FrmHandle);

19)Int ReadScanModeData(unsigned char *ScanModeData, int *ValidDataLength, int FrmHandle);

20)Int SetAccessTime(unsigned char *ComAdr, unsigned char *AccessTime, int FrmHandle);

21)Int GetAccessTime(unsigned char *ComAdr, unsigned char *AccessTimeRet, int FrmHandle);

22)Int SetReceiveChannel(unsigned char *ComAdr, unsigned char *ReceiveANT, int FrmHandle);

23)Int GetReceiveChannelStatus(unsigned char *ComAdr, unsigned char *ReceiveANTStatus, int FrmHandle);

24)Int SetParseMode(unsigned char *ComAdr, unsigned char *ParseMode, int FrmHandle);

25)Int GetParseMode(unsigned char *ComAdr, unsigned char *ParseMode, int FrmHandle);

26)Int SetPwr(unsigned char *ComAdr, unsigned char *_Pwr, int FrmHandle);

27)Int SetPwrByValue(unsigned char *ComAdr, unsigned char *_PwrVal, int FrmHandle);

28)Int GetPwr(unsigned char *ComAdr, unsigned char *_Pwr， unsigned char *_PwrVal, int FrmHandle);

29)Int CheckAntenna(unsigned char *ComAdr, unsigned char *_AntValid, int FrmHandle);

30)Int SyncScan(unsigned char *ComAdr, unsigned char _Sync， int FrmHandle);
31) Int OpenNetPort(long Port , LPTSTR IPaddr, unsigned char *ComAdr,int * FrmHandle);

32) int CloseNetComPort(int FrmHandle);

2.2) Basic Operation Function
1)Int Inventory(unsigned char *ComAdr, unsigned char *State, unsigned char *AFI, unsigned char *DSFIDAndUID, unsigned char *CardNum, int FrmHandle);
2)Int StayQuiet(unsigned char *ComAdr, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);
3)Int ReadSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *BlockSecStatus, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);
4)Int WriteSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);
5)Int LockBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *ErrorCode, int FrmHandle);
6)Int ReadMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char BlockCount, unsigned char *BlockSecStatus, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);
7)Int Select(unsigned char *ComAdr, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);
8)Int ResetToReady(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);
9)Int WriteAFI(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char AFI, unsigned char *ErrorCode, int FrmHandle);
10)Int LockAFI(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);
11)Int WriteDSFID(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char DSFID, unsigned char *ErrorCode, int FrmHandle);
12)Int LockDSFID(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);
13)Int GetSystemInformation(unsigned char *ComAdr, unsigned char *State, unsigned char *UIDI, unsigned char *InformationFlag, unsigned char *UIDO, unsigned char *DSFID, unsigned char *AFI, unsigned char *MemorySize, unsigned char *ICReference, unsigned char *ErrorCode, int FrmHandle);
14)Int CustomizedReadSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *DataBuffer, unsigned char *ErrorCode, int FrmHandle);
15)Int CustomizedWriteSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *DataBuffer, unsigned char ByteCount, unsigned char *ErrorCode, int FrmHandle);
16)Int CustomizedReadMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char BlockCount, unsigned char *DataBuffer, unsigned char *ErrorCode, int FrmHandle);
17)Int WriteMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char StartBlock, unsigned char BlockNum, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);
18)Int LockMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char StartBlock,unsigned char BlockNum, unsigned char *ErrorCode, int FrmHandle);
2.3) Transparent Command Function
1)Int TransparentRead(unsigned char *ComAdr, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);
2)Int TransparentWrite(unsigned char *ComAdr, unsigned char *Option, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);
3)Int TransparentCustomizedCmd(unsigned char *ComAdr, unsigned char *RspTime, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);
3) Function Explanation
3.1) General Function
3.1.1) AutoOpenComPort()
Function description:

This function is used to automatically detect the communication port unoccupied by other application and attached with a reader. The function try to establish the connection between them. The protocol parameters are 19200bps, 8 data bits, 1 start bit, 1 stop bit, no parity bit.
If the connection is established successfully, the function will open the communication port and return a valid handle, otherwise the function will return an error code with a invalid handle(value as -1).

Usage:

Int AutoOpenComPort(int * Port, unsigned char *ComAdr, unsigned char Baud, int *FrmHandle);

Parameter:

Port: Pointed to the communication port number(COM1~COM12) that the reader is detected and connected.

Constants COM1~COM12 are defined as follows:

#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
#define COM10 10
#define COM11 11

#define COM12 12

ComAdr: Pointed to the address of the reader.

When using broadcasting address 0xFF as ComAdr to call the function, the port number to which the reader is detected and the address of the reader will be writed back to parameter Port and ComAdr;

When using a designated address 0x00~0xFE as ComAdr to call the function, the port number to which the reader with the specified address is detected will be writed back to parameter Port.
Baud：This value set the baud rate of the serial communication control.
	baudrate
	Actual baud rate

	0
	19200 bps

	1
	38400 bps

	2
	57600 bps

	3
	115200 bps

FrmHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the reader connected to the port.
Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.1.2) OpenComPort()

Function description:

This function is used to establish the connection between the reader and a specified communication port. The protocol parameters are 19200bps, 8 data bits, 1 start bit, 1 stop bit, no parity bit.

Usage:

Int OpenComPort(int Port, unsigned char *ComAdr, unsigned char Baud, int *FrmHandle);

Parameter:

Port: Communication port number which is a constant from COM1 to COM12 defined as following:
#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
#define COM10 10

#define COM11 11

#define COM12 12

ComAdr: Pointed to the address of the reader.

When using broadcasting address 0xFF as ComAdr to call the function, the address of the reader will be writed back to parameter ComAdr;

When using a designated address 0x00~0xFE as ComAdr to call the function, the function will detect whether a specified address reader is connected to the designaged communication port.
Baud：This value set the baud rate of the serial communication control.
	baudrate
	Actual baud rate

	0
	19200 bps

	1
	38400 bps

	2
	57600 bps

	3
	115200 bps

FrmHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the reader connected to the port.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.1.3) CloseComPort

Function description:

This function is used to disconnect the reader and release the corresponding communication port resources. In some development environment, the communication port resources must be released before exiting. Otherwise the operation system will become unstable.

Usage:
Int CloseComPort(void);

Parameter: None.

Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.1.4) CloseSpecComPort

Function description:

This function is used to disconnect the reader with the designated communication port and release the corresponding resources.

Usage:
Int CloseSpecComPort (int FrmHandle);

Parameter:
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.1.5) GetReaderInformation()

Function description:

This function is used to get reader-related information such as reader address(ComAdr), firmware version, supported protocol type and InventoryScanTime.

Usage:

Int GetReaderInformation(unsigned char *ComAdr, unsigned char *VersionInfo, unsigned char *ReaderType, unsigned char *TrType, unsigned char *InventoryScanTime, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.

VersionInfo: Pointed to 2 bytes firmware version information. The first byte is version number, the second byte is sub-version number.

ReaderType: Pointed to the reader type byte. Please refer to HF001 User’s manual for details.

TrType: Pointed to 2 bytes supported protocol information. Please refer to HF001 User’s manual for details.

InventoryScanTime: Point to the value of time limit for inventory command. Please refer to HF001 User’s manual for details.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPor.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.1.6) OpenRf()
Function description:

This function is used to turn on the RF inductive field.

Usage:

Int OpenRf(unsigned char *ComAdr, int FrmHandle);

Parameter: none.
ComAdr: Pointed to the address of the reader.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.1.7)CloseRf()
Function description:

This function is used to turn off the RF inductive field.

Usage:

Int CloseRf(unsigned char *ComAdr, int FrmHandle);

Parameter:
ComAdr: Pointed to the address of the reader.
FrmHandle: Handle of the corresponding communication port the reader is connected.The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.1.8)WriteComAdr()
Function description:

This function is used to set a new address of the reader. The address value will store in reader’s inner nonvolatile memory. Default address value is 0x00. The value range is 0x00~0xFE. The address 0xFF is reserved as the broadcasting address. When user try to write a 0xFF to ComAdr, the reader will set the value to 0x00 automatically.

Usage:

Int WriteComAdr(unsigned char *ComAdr, unsigned char *ComAdrData, int FrmHandle);

Parameter:

ComAdr: Pointed to the original address of the reader.

ComAdrData: Pointed to the new address of the reader.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.1.9)WriteInventoryScanTime()
Function description:

This function is used to set a new value to InventoryScanTime of an appointed reader. The range is 3~255 corresponding to 3*100ms~255*100ms InventoryScanTime. The default value of InventoryScanTime is 30*100ms.

Usage:

Int WriteInventoryScanTime(unsigned char *ComAdr, unsigned char *InventoryScanTime, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

InventoryScanTime: Pointed to the value of InventoryScanTime.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.10)SetGeneralOutput()
Function description:

This function is used to set the state of two built-in general output terminals(TTL level, default is low level).

Usage:

Int SetGeneralOutput(unsigned char *ComAdr, unsigned char *OutputData, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

OutputData: Pointed to the state value of two general outputs with Bit0 for G_Out1 and bit1 for G_Out2.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.11)GetGeneralInput()
Function description:

This function is used to get the state of the general input terminal of the reader. The terminal is internally pulled up to +5V through a 20Kohm resistor(TTL level).

Usage:

Int GetGeneralInput(unsigned char *ComAdr, unsigned char *InputData, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

InputData: Pointed to the state value of the general input G_IN1 with bit0.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.12)SetRelay()
Function description:

This function is used to activate or deactivate the built-in relay of the reader. The relay’s default state is deactivated.

Usage:

Int SetRelay(unsigned char *ComAdr, unsigned char *RelayAction, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

RelayAction: Pointed to the relay state value. Set bit0 to 1 to deactivate the relay and set bit0 to 0 to activate it.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
3.1.13)SetActiveANT()
Function description:

This function is used to select one of the antennas of the reader to be active. The default active antenna is Antenna 1.
Usage:

Int SetActiveANT(unsigned char *ComAdr, unsigned char *_ANT_Status, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

_ANT_Status: Pointed to the antenna state value. Set bit0 to 1 to activate Antenna 1, set bit1 to 1 to activate Antenna 2, set bit2 to 1 to activate Antenna 3, set bit3 to 1 to activate Antenna 4. Only one bit can be set at one time.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.14)GetANTStatus()
Function description:

This function is used to get the current state of the reader’s antennae.
Usage:

Int GetANTStatus(unsigned char *ComAdr, unsigned char *Get_ANT_Status, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

Get_ANT_Status: Pointed to the current antenna state value. Bit0 is set when Antenna 1 is active, Bit1 is set when Antenna 2 is active, Bit2 is set when Antenna 3 is active and Bit3 is set when Antenna 4 is active.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.15)SetUserDefinedBlockLength()
Function description:

This function is used to set the user defined block length which to be used in user defined read/write operations or in ScanMode.
Usage:

Int SetUserDefinedBlockLength(unsigned char *ComAdr, unsigned char *_Block_Len, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

_Block_Len: Pointed to block length value in byte unit which is from 1 to 8.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.16)GetUserDefinedBlockLength()
Function description:

This function is used to get the user defined block length value.
Usage:

Int GetUserDefinedBlockLength(unsigned char *ComAdr, unsigned char *_Block_Len, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

_Block_Len: Pointed to block length value in byte unit.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.17)SetScanMode()
Function description:

This function is used to set the reader in ScanMode and define the output content and format of the reader in ScanMode.
Usage:

Int SetScanMode(unsigned char *ComAdr, unsigned char *_Scan_Mode_Data, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

_Block_Len: Pointed to 11 bytes ScanMode control data. For details of the control data, please refer to the reader’s user’s manual.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.18)GetScanModeStatus()
Function description:

This function is used to get the status control data of the reader in ScanMode.
Usage:

Int GetScanModeStatus(unsigned char *ComAdr,unsigned char *_Scan_Mode_Data, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.

_Block_Len: Pointed to current value of 11 bytes ScanMode control data. For details of the control data, please refer to the reader’s user’s manual.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.19)ReadScanModeData()
Function description:

This function is used to fetch the data which the reader send out in ScanMode.
Usage:

Int ReadScanModeData(unsigned char *ScanModeData, int *ValidDataLength, int FrmHandle);

Parameter:

ScanModeData: Pointed to the data the reader sends out in ScanMode. Please make sure that there is enough space in ScanModeData to accommodate the data from the reader.
ValidDataLength: Pointed to valid byte count in ScanModeData.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.20)SetAccessTime()
Function description:

This function is used to set the access time of tag passing through the inductive field.
Usage:

Int SetAccessTime(unsigned char *ComAdr, unsigned char *AccessTime, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

AccessTime: Pointed to time value in 100ms unit that the tag passes the field. If set to 0, the reader will ignore the value. For details of the access time setting, please refer to the reader user’s manual.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.21)GetAccessTime()
Function description:

This function is used to get the current access time value of tag passing through the inductive field.
Usage:

Int GetAccessTime(unsigned char *ComAdr, unsigned char *AccessTimeRet, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

AccessTimeRet: Pointed to current access time value in 100ms unit that the tag passes the field. For details of the access time setting, please refer to the reader user’s manual.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.22)SetReceiveChannel()
Function description:

This function is used to set the effective receiving channel of the reader. This function is available for the readers equipped with one main channel(TX/RX) and one auxiliary channel(RX only).
Usage:

Int SetReceiveChannel(unsigned char *ComAdr, unsigned char *ReceiveChannel, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

ReceiveChannel: Pointed to receive channel setting value. If set to 1, the reader will only use its auxiliary channel. If set to 2, the reader will only use its main channel. If set to 3, the reader will use both of its receive channels.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
3.1.23)GetReceiveChannelStatus()
Function description:

This function is used to get the current receive channel setting value.
Usage:

Int GetReceiveChannelStatus(unsigned char *ComAdr, unsigned char *ReceiveChannelStatus, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

ReceiveChannelStatus: Pointed to current receive channel setting value. If equal to 1, the reader is using its auxiliary channel. If equal to 2, the reader is using its main channel. If equal to 3, the reader is using both of its receive channels.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.24)SetParseMode()
Function description:

This function is used to set the reader’s parsing mode in multiple tags operation.
Usage:

Int SetParseMode(unsigned char *ComAdr, unsigned char *ParseMode, int FrmHandle);

Parameter:

ComAdr: Pointed to the address of the reader.

ParseMode: Pointed to parsing mode setting value. If set to 1, the reader will adopt DPPM(Depth Priority Parse Mode). If set to 0, the reader will adopt WPPM(Width Priority Parse Mode). Please refet to the reader’s user’s manual for the definition of other values.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:

Zero value when successful, non-zero value when error occurred.

3.1.25)GetParseMode()
Function description:

This function is used to get the reader’s current parsing mode setting.
Usage:

Int GetParseMode(unsigned char *ComAdr, unsigned char *ParseMode, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.

ParseMode: Pointed to current parsing mode setting value. If equal to 1, the reader is in DPPM(Depth Priority Parse Mode). If equal to 0, the reader is in WPPM(Width Priority Parse Mode). Please refet to the reader’s user’s manual for the definition of other values.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.26) SetPwr()
Function description:

This function is used to set the reader’s current power by watt.
Usage:

Int SetPwr(unsigned char *ComAdr, unsigned char *_Pwr, int FrmHandle)；

Parameter:

ComAdr: Pointed to the address of the reader.

_Pwr: Pointed to current watt value.Range of 0~39.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.27) SetPwrByValue ()
Function description:

This function is used to set the reader’s current power in number.
Usage:

Int SetPwrByValue (unsigned char *ComAdr, unsigned char *_PwrVal, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.

_ PwrVal: Pointed to current power number.Range of 0~99.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.28) GetPwr ()
Function description:

This function is used to get the reader’s current power.
Usage:

Int GetPwr(unsigned char *ComAdr, unsigned char *_Pwr， unsigned char *_PwrVal, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.
_Pwr: Pointed to current watt value.Range of 0~39.
_ PwrVal: Pointed to current power number.Range of 0~99.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.29) CheckAntenna()
Function description:

This function is used to check the reader’s Antenna state.
Usage:

Int CheckAntenna (unsigned char *ComAdr, unsigned char *_AntValid， unsigned char *_PwrVal, int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.
_ AntValid: OutPut.
Bit7 = 0: already calibration,

Bit7 = 1: not calibration,

Bit1 = 0: super limit,

Bit1 = 1: super floor,

Bit0 = 0: normal,

Bit0 = 1: anomaly,

Other bits Reserve.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.1.30) SyncScan ()
Function description:

This function is used tosend a command data, Reader is scanning work instructions synchronization.
Usage:

Int SyncScan(unsigned char *ComAdr, unsigned char _Sync， int FrmHandle);
Parameter:

ComAdr: Pointed to the address of the reader.
_ AntValid: InPut.

Bit0 = 0: stop scan,

Bit0 = 1: do scanning,

Other bits Reserve.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
3.1.31)Connect reader Net port: OpenNetPort()

Function description:

This function is used to used to open net port..

Usage:

int OpenNetPort(int Port,LPSTR IPaddr, unsigned char *ComAddr, int *FrmHandle);

Parameter:

Port: Input. Pointed to the net port of the reader,range is 1024 to 65534:
IPaddr: Input: Pointed to string of reader IP.
ComAddr: Input/Output. Pointed to the address of the reader.

When using broadcasting address 0xFF as ComAddr to call the function, the address of the reader will be written back to parameter ComAddr;

When using a designated address 0x00~0xFE as ComAddr to call the function, the function will detect whether a specified address reader is connected to the designated communication port.

FrmHandle: Output. Pointed to the handle which is binding with the communication port opened successfully. The application software should use this handle to talk with the reader.

Returns:
Zero value when successful, non-zero value when error occurred
3.1.32)Disconnect reader net port: CloseNetPort()
Function description:

This function is used to disconnect net port.

Usage:

int CloseNetPort(int FrmHandle);
Parameter:

FrmHandle: Input. Handle of the communication port the reader is connected to. The handle value is got when calling function OpenNetPort.
Returns:

Zero value when successful, non-zero value when error occurred
3.2) Basic Operation Function

3.2.1) Inventory()
Function description:

This function is used to detect the tags in the inductive area and get their UID and DSFID values.

Usage:

Int Inventory(unsigned char *ComAdr, unsigned char *State, unsigned char *AFI, unsigned char *DSFIDAndUID, unsigned char *CardNum, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Inventory without AFI: 0x00

 Inventory with AFI: 0x01

 InventoryScan without AFI: 0x02(consecutive style)

InventoryScan with AFI: 0x03(consecutive style)

InventoryScan without AFI: 0x06(renewed style)

InventoryScan with AFI: 0x07(renewed style)

 The value of State defines various operation style of Inventory command, please refer to HF001 User’s Manual for details.
AFI: Input. Application Family Information of the tag.

DSFIDAndUID: Output. Pointed to the array storing the inventory result. The unit of the array is 9 bytes including 1 byte DSFID and 8 bytes UID. The volume of the result is CardNum*9 bytes.

CardNum: Output. Pointed to the number of tags detected. As CardNum is a byte-type variant, the DLL limits the maximum card number that can be collected at one time to 255. Actually, the reader sets no limit to the quantity of the tags in the field.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

When returned value is 0x0e and the cardNum is non-zero, it means the reader have replied cardNum tags’ information in the DSFIDAndUID;

When returned value is 0x0e and the cardNum is zero, it means there is no tag in field or all the tags have been collected;

When returned value is 0x0a, it means none tag has been collected when the time defined by InventoryScanTime overflows;

When returned value is 0x0b, it means parts (not all) of the tags have been collected when the time defined by InventoryScanTime overflows.

For details, please refer to the reader’s user’s manual.
3.2.2) StayQuiet()

Function description:

This function is used to set the designated tag into Quiet status.

Usage:

Int StayQuiet(unsigned char *ComAdr, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.3) ReadSingleBlock()

Function description:

This function is used to read out the content of one block and its security status byte.

Usage:

Int ReadSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *BlockSecStatus, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Block size = 4 bytes Addressed mode: 0x00

 Selected mode: 0x01

 Block size = 8 bytes Addressed mode: 0x04

 Selected mode: 0x05

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to read.

BlockSecStatus: Output. Pointed to the security value of the designated block.
Data: Output. Pointed to the array of the block content with the size of 4 or 8 bytes.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.4) WriteSingleBlock()

Function description:

This function is used to write data into a block of the designated tag.

Usage:

Int WriteSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Block size=4 bytes Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 Block size=8 bytes Addressed mode: 0x04(Type A tag) 0x0C(Type B tag)

 Selected mode: 0x05(Type A tag) 0x0D(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to write.

Data: Iutput. Pointed to the data to be written into the block with the size of 4 or 8 bytes.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.5) LockBlock()

Function description:

This function is used to lock a block of the designated tag. When a block is locked, it will be permanently write-protected and its content could not be altered.

Usage:

Int LockBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)
Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to lock.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.6) ReadMultipleBlock()

Function description:

This function is used to read out the content of several blocks and their security status bytes in the designated tag.

Usage:
Int ReadMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char BlockCount, unsigned char *BlockSecStatus, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Block size = 4 bytes Addressed mode: 0x00, emulated:0x02;
 Selected mode: 0x01, emulated:0x03;
 Block size = 8 bytes Addressed mode: 0x04, emulated:0x06;
 Selected mode: 0x05, emulated:0x07.
UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The start block number to read.

BlockCount: Input. The number of the blocks to read. The maximum number is 28 when block size is 4 bytes and the maximum number is 15 when block size is 8 bytes.

BlockSecStatus: Output. Pointed to the security value of the designated blocks with the size of BlockCount bytes..

Data: Output. Pointed to the block content data with the size of 4 (or 8)*BlockCount bytes.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.7) Select()

Function description:

This function is used to set the tag into selected status.

Usage:

Int Select(unsigned char *ComAdr, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.8) ResetToReady()

Function description:

This function is used to set back the tag into ready status.

Usage:

Int ResetToReady(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00

 Selected mode: 0x01

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
 3.2.9) WriteAFI()

Function description:

This function is used to write the value of the designated tag’s Application Family Information.

Usage:

Int WriteAFI(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char AFI, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

AFI: Input. The value of the tag’s Application Family Information.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.10) LockAFI()

Function description:

This function is used to permanently lock the AFI value of the designated tag.

Usage:

Int LockAFI(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.11) WriteDSFID()

Function description:

This function is used to write the value of the designated tag’s Data Storage Format Identifier.

Usage:

Int WriteDSFID(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char DSFID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

DSFID: Input. The value of the tag’s Data Storage Format Identifier.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.12) LockDSFID()

Function description:

This function is used to permanently lock the DSFID value of the designated tag.

Usage:

Int LockAFI(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.13) GetSystemInformation()

Function description:

This function is used to acquire the detail description information of the designated tag including its Information Flag, UID, DSFID, AFI, Memory, IC Reference etc. The contents may be different for tags of various manufacturers. Please refer to tag’s datasheet for details.

Usage:

Int GetSystemInformation(unsigned char *ComAdr, unsigned char *State, unsigned char *UIDI, unsigned char *InformationFlag, unsigned char *UIDO, unsigned char *DSFID, unsigned char *AFI, unsigned char *MemorySize, unsigned char *ICReference, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00

 Selected mode: 0x01

UIDI: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UIDI value should be given. When operating in Selected mode, UIDI value will be neglected.

InformationFlag: Output. Pointed to the tag’s information flag.

UIDO: Output. Pointed to the 8 bytes of tag’s UID value with least significant byte first.

DSFID: Output. Pointed to the tag’s DSFID value.

AFI: Output. Pointed to the tag’s AFI value.

MemorySize: Output. Point to a 2 bytes array of tag’s storage size information. The first byte indicates the total number of data blocks of the tag and the second byte for the size of the data block.

ICReference: Output. Pointed to a reference byte.

ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
3.2.14) CustomizeReadSingleBlock()

Function description:

This function is used to read out the content of one block and its security status byte. The block length is predefined by users.
Usage:

Int CustomizeReadSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *DataBuffer, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0xa0

 Selected mode: 0xa1

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to read.

DataBuffer: Output. Pointed to the security status value and content of the designated block. The first byte in DataBuffer is security status byte and the others are block content bytes. The block content length is predefined by user.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.15) CustomizeWriteSingleBlock()

Function description:

This function is used to write in the content of one block. The block length is predefined by users.
Usage:

Int CustomizeWriteSingleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char *DataBuffer, unsigned char ByteCount, unsigned char *ErrorCode, int FrmHandle);
Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0xa0(Type A tag) 0xa8(Type B tag)
 Selected mode: 0xa1(Type A tag) 0xa9(Type B tag)
UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to write.

DataBuffer: Input. Pointed to the content of the designated block to write into.
ByteCount: Input. The number of bytes to be written. This value should be equal to the block length predefined by user.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.16) CustomizeReadMultipleBlock()

Function description:

This function is used to read out the content of multiple blocks and their security status bytes. The block length is predefined by users.
Usage:

Int CustomizeReadMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char BlockNum, unsigned char BlockCount, unsigned char *DataBuffer, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0xa0

 Selected mode: 0xa1

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.

BlockNum: Input. The block number to read.
BlockCount: Input. Number of consecutive blocks to read.
DataBuffer: Output. Pointed to the security status value and content of multiple blocks. The data from every block is consecutively organized in DataBuffer. The data from one block comprise one security status byte and its block content bytes. The block content length is predefined by user.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.
3.2.17) WriteMultipleBlock()

Function description:

This function is used to write data into multiple block of the designated tag.

Usage:

Int WriteMultipleBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char StartBlock,unsigned char BlockNum, unsigned char *Data, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Block size=4 bytes Addressed mode: 0x00(Type A tag) 0x08(Type B tag)

 Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 Block size=8 bytes Addressed mode: 0x04(Type A tag) 0x0C(Type B tag)

 Selected mode: 0x05(Type A tag) 0x0D(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.
StartBlock: Input. The start block number to write.
BlockNum: Input. The block number to write.

Data: Iutput. Pointed to the data to be written into the block with the size of (4* BlockNum) or (8* BlockNum) bytes .

ErrorCode: Output. Pointed to an write block error number when the function return value equals 0x07.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.2.18) LockMultipleBlock()

Function description:

This function is used to lock multiple block of the designated tag. When a block is locked, it will be permanently write-protected and its content could not be altered.

Usage:

Int LockBlock(unsigned char *ComAdr, unsigned char *State, unsigned char *UID, unsigned char StartBlock unsigned char BlockNum, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

State: Input. Operation mode indicator byte defined as follows:

 Addressed mode: 0x00(Type A tag) 0x08(Type B tag)
Selected mode: 0x01(Type A tag) 0x09(Type B tag)

 As to the type of a tag, please refer to appendix 1 for details.

UID: Input. Pointed to the 8 bytes of tag’s UID value with least significant byte first. When operating in Addressed mode, UID value should be given. When operating in Selected mode, UID value will be neglected.
StartBlock: Input. The start block number to lock.
BlockNum: Input. The block number to lock.

ErrorCode: Output. Pointed to an lock block error number when the function return value equals 0x07.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value when error occurred.

3.3) Transparent Command Function
3.3.1) TransparentRead ()

Function description:

This function is used to turn the reader into an RF front-end engine to read data from tags. The reader encapsulates the host’s data in ISO15693 protocol format and sends them to tags. Then, the reader decodes the feedback data from tag and sends back the results to the host. All interactive timing is according to ISO15693 protocol definition.
Usage:

Int TransparentRead(unsigned char *ComAdr, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);

Parameter:

ComAdr: Input. Pointed to the address of the reader.

RspLength: Input. The response data byte length expected from the tag which should be between 3 and 120.
CustomDataLength: The byte length of the data the reader should send to the tag with value between 1 and 120.
CustomData: Input. Pointed to the data the reader should send to the tag.

FeedbackDataLength:Output. Byte Length of the tag response data. If the operation successful, it should be 4+RspLength. For details, please refer to the reader user’s manual.
FeedbackData: Output. Pointed to the data the tag responds.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:
Zero value when successful, non-zero value when error occurred.

3.3.2) TransparentWrite ()

Function description:

This function is used to turn the reader into an RF front-end engine to write data into tags. The reader encapsulates the host’s data in ISO15693 protocol format and sends them to tags. Then, the reader decodes the feedback data from tag and sends back the results to the host. All interactive timing is according to ISO15693 protocol definition.
Usage:

Int TransparentWrite(unsigned char *ComAdr, unsigned char *Option, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);
Parameter:

ComAdr: Input. Pointed to the address of the reader.
Option: Input. Pointed to a 4 bytes writing operation option data. For details, please refer to the reader user’s manual.
RspLength: Input. The response data byte length expected from the tag which should be between 3 and 120.
CustomDataLength: Input. The byte length of the data the reader should send to the tag with value between 1 and 120.
CustomData: Input. Pointed to the data the reader should send to the tag.

FeedbackDataLength:Output. Byte Length of the tag response data. If the operation successful, it should be 4+RspLength. For details, please refer to the reader user’s manual.

FeedbackData: Output. Pointed to the data the tag responds.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:
Zero value when successful, non-zero value when error occurred.
3.3) TransparentCustomizedCmd ()

Function description:

This function is used to turn the reader into an RF front-end engine to read data from tags. The reader encapsulates the host’s data in ISO15693 protocol format and sends them to tags. Then, the reader decodes the feedback data from tag and sends back the results to the host. Response decode start timing can be defined by users.
Usage:

Int TransparentCustomizedCmd(unsigned char *ComAdr, unsigned char *RspTime, unsigned char RspLength, unsigned char CustomDataLength, unsigned char *CustomData, unsigned char *FeedbackDataLength, unsigned char *FeedbackData, unsigned char *ErrorCode, int FrmHandle);
Parameter:

ComAdr: Input. Pointed to the address of the reader.
RspTime: Input. Pointed to a 2 bytes data defining the response decode start timing of the reader. For details, please refer to the reader user’s manual.
RspLength: Input. The response data byte length expected from the tag which should be between 3 and 120.
CustomDataLength: Input. The byte length of the data the reader should send to the tag with value between 1 and 120.
CustomData: Input. Pointed to the data the reader should send to the tag.

FeedbackDataLength:Output. Byte Length of the tag response data. If the operation successful, it should be 4+RspLength. For details, please refer to the reader user’s manual.

FeedbackData: Output. Pointed to the data the tag responds.
ErrorCode: Output. Pointed to an explanation byte when the function return value equals 0x0F.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:
Zero value when successful, non-zero value when error occurred.
4) Return Value Definition

#define OK

0x00
#define LengthError 0x01

#define OperationNotSupport 0x02

#define DataOutofRange 0x03

#define CmdNotOperation 0x04
#define RfClosed 0x05

#define EEPROM 0x06

#define TimeOut 0x0a

#define MoreUID 0x0b
#define ISOError 0x0c

#define NoElectronicTag 0x0e

#define OperationError 0x0f
#define CommunicationErr 0x30
#define RetCRCErr 0x31
#define DataLengthErr 0x32

#define CommunicationBusy 0x33

#define ExecuteCmdBusy 0x34

#define ComPortOpened 0x35

#define ComPortClose 0x36

#define Invalidhandle 0x37

#define InvalidPort 0x38

5) ErrorCode Definition
#define CmdNotSupport 0x01

#define CmdNotIdentify 0x02

#define OperationNotSupport 0x03

#define UnknownError 0x0f

#define BlockError 0x10

#define BlockLockedAndCntLock 0x11

#define BlockLockedAndCntWrite 0x12

#define BlockCntOperate 0x13

#define BlockCntLock 0x14

Appendix 1

	
	HF201∕HF001
	HF201Lite∕HF001Lite
	HF202A∕HF002A
	HF203A∕HF003A
	HF201T∕HF001T
	HF202T∕HF002T
	HF203T∕HF003T
	HF291∕HF091
	HF291F∕HF091F
	HF292A∕HF092A
	HF293A∕HF093A
	HF291T∕HF091T
	HF292T∕HF092T
	HF293T∕HF093T
	HF296A
	HF036SR∕USB∕CF
	HF037SR∕USB∕CF

	AutoOpenComPort
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	OpenComPort
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	CloseComPort
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	CloseSpecComPort
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	GetReaderInformation
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	OpenRf
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	CloseRf
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	WriteComAdr
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	WriteInventoryScanTime
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	SetGeneralOutput
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	
	√1
	√1

	GetGeneralInput
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	
	
	

	SetRelay
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	
	
	

	SetActiveANT
	
	
	√
	√
	
	√
	√
	
	
	√
	√
	
	√
	√
	
	
	

	GetANTStatus
	
	
	√
	√
	
	√
	√
	
	
	√
	√
	
	√
	√
	
	
	

	SetUserDefinedBlockLength
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	√
	
	√

	GetUserDefinedBlockLength
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	√
	
	√

	
	HF201∕HF001
	HF201Lite∕HF001Lite
	HF202A∕HF002A
	HF203A∕HF003A
	HF201T∕HF001T
	HF202T∕HF002T
	HF203T∕HF003T
	HF291∕HF091
	HF291F∕HF091F
	HF292A∕HF092A
	HF293A∕HF093A
	HF291T∕HF091T
	HF292T∕HF092T
	HF293T∕HF093T
	HF296A
	HF036SR∕USB∕CF
	HF037SR∕USB∕CF

	SetScanMode
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	√
	
	√

	GetScanModeStatus
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	√
	
	√

	ReadScanModeData
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	√
	
	√

	SetAccessTime
	
	
	
	
	
	
	
	
	√
	
	
	
	
	
	
	
	

	GetAccessTime
	
	
	
	
	
	
	
	
	√
	
	
	
	
	
	
	
	

	SetReceiveChannel
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	√
	
	

	GetReceiveChannelStatus
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	√
	
	

	SetParseMode
	
	
	
	
	√
	√
	√
	
	
	
	
	√
	√
	√
	√
	
	

	GetParseMode
	
	
	
	
	√
	√
	√
	
	
	
	
	√
	√
	√
	√
	
	

	Inventory
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√2
	√2

	StayQuiet
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	ReadSingleBlock
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	WriteSingleBlock
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	LockBlock
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	ReadMultipleBlock
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	Select
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	ResetToReady
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	WriteAFI
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	
	HF201∕HF001
	HF201Lite∕HF001Lite
	HF202A∕HF002A
	HF203A∕HF003A
	HF201T∕HF001T
	HF202T∕HF002T
	HF203T∕HF003T
	HF291∕HF091
	HF291F∕HF091F
	HF292A∕HF092A
	HF293A∕HF093A
	HF291T∕HF091T
	HF292T∕HF092T
	HF293T∕HF093T
	HF296A
	HF036SR∕USB∕CF
	HF037SR∕USB∕CF

	LockAFI
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	WriteDSFID
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	LockDSFID
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	GetSystemInformation
	√
	
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	CustomizedReadSingleBlock
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	
	
	√

	CustomizedWriteSingleBlock
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	
	
	√

	CustomizedReadMultipleBlock
	
	
	
	
	
	
	
	√
	√
	√
	√
	√
	√
	√
	
	
	√

	TransparentRead
	√3
	
	
	
	√
	√
	√
	√3
	
	
	
	√
	√
	√
	√4
	
	√3

	TransparentWrite
	√3
	
	
	
	√
	√
	√
	√3
	
	
	
	√
	√
	√
	√4
	
	√3

	TransparentCustomizedCmd
	√3
	
	
	
	√
	√
	√
	√3
	
	
	
	√
	√
	√
	√4
	
	√3

 Remark:

1． For HF036 and HF037, this is actually the SetBUZandLED command used to control its built-in Green LED and Buzzer.
2． Only Non-Scan-Inventory supported.
3． Only available for readers with firmware version 6.0 or above.
4． Only available in Main Receive Channel.
Appendix 2
	Manufacturer
	Manu.Code
	Block Information
	TYPE

	
	
	Number
	Size
	A
	B

	Infineon (ISO Address mode)
	0x05
	256(user range:0～249)
	4bytes
	
	√

	
	
	64(user range:0～57)
	4bytes
	
	√

	STMicroelectronics (LRI512)
	0x02
	16(user range:0~15)
	4bytes
	
	√

	Fujitsu (MB89R116)
	0x08
	256(user range:0～249)
	8bytes
	√
	√

	Philips (I-Code SLI)
	0x04
	32(user range:0～27)
	4bytes
	
	√

	Texas Instruments (Tag-it HF-I)
	0x07
	64(user range:0～63)
	4bytes
	√
	

Remark: For detail information and other tags, please refer to corresponding tag’s datasheet.
